Charts - Performance Mode (100'000 points)

import io.data2viz.charts.* import io.data2viz.charts.core.* import io.data2viz.charts.dimension.* import io.data2viz.charts.chart.* import io.data2viz.charts.chart.mark.* import io.data2viz.charts.viz.* import io.data2viz.charts.layout.* import io.data2viz.geom.* import io.data2viz.color.* import io.data2viz.random.RandomDistribution import io.data2viz.timeFormat.* import io.data2viz.timeFormat.TimeLocale import kotlinx.datetime.Instant import io.data2viz.math.* import io.data2viz.shape.* import kotlin.random.* import kotlin.math.* fun main() { // Creating and sizing the VizContainer val vc = newVizContainer().apply { size = Size(width, height) } val samples = generateData(5, 20_000) vc.chart(samples) { config { performanceMode = true events { triggerMode = TriggerMode.Column zoomMode = ZoomMode.X panMode = PanMode.X } cursor { show = false } } val timeDim = quantitative( { domain.second.toDouble() } ) val tempDim = quantitative( { domain.third } ) series = discrete( {domain.first} ) line(timeDim, tempDim) { marker = discrete ( { Symbols.Circle } ) } } } val width = 450.0 val height = 300.0 fun generateData(series:Int, samplesPerSeries:Int): List<Triple<Int, Int, Double>> = (0 until series).map { s -> val i = 40 * Random.nextDouble() val o = 40 * Random.nextDouble() val r = 160 * Random.nextDouble() (0 until samplesPerSeries).map { sample -> var n = r * (s + 1) * exp(abs(sample - samplesPerSeries / 2) / samplesPerSeries.toDouble()) * sin(sample / (samplesPerSeries / i)) * cos(sample / (samplesPerSeries / o)) Triple(s, sample, n) } }.flatten()
alisia avatar

Sketch created by

alisia